64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque
نویسندگان
چکیده
The ability to detect and quantify macrophage accumulation can provide important diagnostic and prognostic information for atherosclerotic plaque. We have previously shown that LyP-1, a cyclic 9-amino acid peptide, binds to p32 proteins on activated macrophages, facilitating the visualization of atherosclerotic plaque with PET. Yet, the in vivo plaque accumulation of monomeric [(18)F]FBA-LyP-1 was low (0.31 ± 0.05%ID/g). To increase the avidity of LyP-1 constructs to p32, we synthesized a dendritic form of LyP-1 on solid phase using lysine as the core structural element. Imaging probes (FAM or 6-BAT) were conjugated to a lysine or cysteine on the dendrimer for optical and PET studies. The N-terminus of the dendrimer was further modified with an aminooxy group in order to conjugate LyP-1 and ARAL peptides bearing a ketone. Oxime ligation of peptides to both dendrimers resulted in (LyP-1)4- and (ARAL)4-dendrimers with optical (FAM) and PET probes (6-BAT). For PET-CT studies, (LyP-1)4- and (ARAL)4-dendrimer-6-BAT were labeled with (64)Cu (t1/2 = 12.7 h) and intravenously injected into the atherosclerotic (ApoE(-/-)) mice. After two hours of circulation, PET-CT coregistered images demonstrated greater uptake of the (LyP-1)4-dendrimer-(64)Cu than the (ARAL)4-dendrimer-(64)Cu in the aortic root and descending aorta. Ex vivo images and the biodistribution acquired at three hours after injection also demonstrated a significantly higher uptake of the (LyP-1)4-dendrimer-(64)Cu (1.1 ± 0.26%ID/g) than the (ARAL)4-dendrimer-(64)Cu (0.22 ± 0.05%ID/g) in the aorta. Similarly, subcutaneous injection of the LyP-1-dendrimeric carriers resulted in preferential accumulation in plaque-containing regions over 24 h. In the same model system, ex vivo fluorescence images within aortic plaque depict an increased accumulation and penetration of the (LyP-1)4-dendrimer-FAM as compared to the (ARAL)4-dendrimer-FAM. Taken together, the results suggest that the (LyP-1)4-dendrimer can be applied for in vivo PET imaging of plaque and that LyP-1 could be further exploited for the delivery of therapeutics with multivalent carriers or nanoparticles.
منابع مشابه
Systemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan
Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...
متن کاملSpecific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice.
The ability to selectively deliver compounds into atherosclerotic plaques would greatly benefit the detection and treatment of atherosclerotic disease. We describe such a delivery system based on a 9-amino acid cyclic peptide, LyP-1. LyP-1 was originally identified as a tumor-homing peptide that specifically recognizes tumor cells, tumor lymphatics, and tumor-associated macrophages. As the rece...
متن کاملMultimodality PET/MR imaging agents targeted to activated macrophages
The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles (IONPs) have become a popular platform for the fabrication of PET/MRI probes due to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this paper, we report the ...
متن کامل64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques.
UNLABELLED The rupture of vulnerable atherosclerotic plaques that lead to stroke and myocardial infarction may be induced by macrophage infiltration and augmented by the expression of integrin αvβ3. Indeed, atherosclerotic angiogenesis may be a promising marker of inflammation. In this study, an engineered integrin αvβ3-targeting PET probe, (64)Cu-NOTA-3-4A, derived from a divalent knottin mini...
متن کاملPositron Emission Tomographic Imaging of Copper 64- and Gallium 68-Labeled Chelator Conjugates of the Somatostatin Agonist Tyr3-Octreotate.
The bifunctional chelator and radiometal have been shown to have a direct effect on the pharmacokinetics of somatostatin receptor (SSTR)-targeted imaging agents. We evaluated three Y3-TATE analogues conjugated to NOTA-based chelators for radiolabeling with 64Cu and 68Ga for small-animal positron emission tomographic/computed tomograhic (PET/CT) imaging. Two commercially available NOTA analogues...
متن کامل